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Since the predictions of the capillary wave model (CWM) are often claimed to 
be universally valid, we scrutinize its microscopic foundations and discuss the 
legitimacy of the necessary approximations. We show that there may very well 
be regimes where the CWM is inadequate and demonstrate how to treat such 
scenarios. As the CWM---despite of its lack of microscopic foundation--seems 
to be supported by its appealing scaling properties (in d<  3), we examine the 
scaling behavior also for d=  3. It turns out that the CWM in d = 3--especially 
the corresponding direct correlation function and several of its descendants--is 
plagued by various pathologies which exclude a proper scaling limit in the usual 
sense. In connection with these features we critically comment upon recent work 
of Weeks etaL, presenting a markedly deviating interpretation of the 
phenomena which emerge when g goes to zero. 

KEY WORDS: Capillary wave model; scaling picture; interface Hamiltonians. 

1. I N T R O D U C T I O N  

The behavior and internal structure (both macroscopic and microscopic) of 
the liquid-vapor interface (after the thermodynamic limit has been taken) 
when the gravitational constant g approaches zero has been the focus of 
interest for quite some time. This has its origin both in fundamental and in 
practical considerations (e.g., Goldstone excitations, correct definition of 
surface tension 7 as an "intrinsic" quantity, etc.) and in various quite 
intricate mathematical features and subtleties which invariably enter the 
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stage when the above limit g ~ 0 is taken properly and carefully (which has 
not always been the case!). 

That something peculiar is happening (e.g., poor clustering of the pair 
correlation H) in the interface was already observed by Wertheim. ~1) The 
degree of power-law decay of H in this limit was then quantitatively 
specified by one of the authors. (2) In contrast to other papers about this 
point, the approach developed in ref. 2 started from the true microscopic 
level of statistical point mechanics and made no model assumption such as, 
e.g., the capillary wave ansatz. It was afortiori stressed in the paper that 
the poor decay is a completely normal feature within the Goldstone picture 
proper of spontaneous symmetry breaking. Further consequences for the 
direct correlation function C were then drawn in ref. 3. 

Another line of reasoning originated with the capillary wave model 
(CWM) of Buff et al., (4) which has been substantially developed further by 
Weeks and co-workers (cf., e.g., refs. 5-7 or the review in ref. 8). This model 
gave the screw another turn due to its prediction of a washing out of the 
density profile p(z) in dimensions d~< 3 as g ~ 0 and its strikingly elegant 
scaling properties for d <  3 as well as d >  3. (6,7) However, there remains a 
discussion of whether the nonexistence of a stable self-maintained (g = 0) 
interface also for d =  3 is an inescapable fact of any description of 
liquid-vapor systems whatsoever or whether it is on the contrary just an 
artificiality of the CWM which is then surmised to be an oversimplification 
of the underlying truly microscopic theory. (9"1~ To scrutinize this question 
several distinct strategies have been developed. The first one we mention is 
due to Robert. (3'11) Starting with his result that in a self-maintained inter- 
face in d-- 3 the direct correlation function C has to display an extremely 
poor algebraic decay, he then adds the a priori assumption that the 
Triezenberg-Zwanzig expression 7Tz for the surface tension (see refs. 12 
and 13 or for a more complete list of references about the whole field the 
beautiful book of Rowlinson and Widom (14)) is also in the limit V= 0% 
g = 0 the correct expression for the macroscopic "mechanical" surface ten- 
sion 7, which can in any case be safely identified with the older Kirkwood-  
Buff version 7KB. (Is) It is essentially this assumption that leads to the 
requirement that 7Tz is a finite quantity even in this limit, and Robert then 
concludes that, in order to compensate the in principle too long-ranged 
tails emerging in the integral expression for 7TZ, dp/dz has to be zero for 
g = 0 .  The identification of 7Tz and 7KB was supported by a paper by 
Schofield. (16) However, we closely inspected--among other things--the 
validity of this observation in ref. 17 and showed that 7TZ, 7KB could--a t  
least in the limit V= ~ ,  g = 0 ~ a s  well differ by even an infinite amount 
(with 7KB, however, being always finite). This is just a consequence of the 
peculiar long-range character of H, C in this limit, which leads inescapably 
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to various boundary corrections, thus rendering the above conclusion 
p'(z) - 0 somewhat obscure. 

A second strategy has been developed by ourselves (t8) and discusses 
the implications for models which are described by interface Hamiltonians 
~ [ h ]  being functionals of an elongation field h(s) of the interface. Our 
main result was that in d - -3  such model systems do very well admit the 
description of self-maintained interfaces, provided that the "interaction 
kernel" 622/r 6h(s') is sufficiently long-ranged in the difference variable 
s - s ' .  This immediately makes clear why the CWM by its very definition 
does imply the washing out of the interface as g ~ 0: Its interaction kernel 
is extremely short-ranged; it has in fact delta-function character! This 
observation leads naturally to the question of where and by which 
approximation the short-rangedness of the CWM Hamiltonian emerges, 
since, as we have shown, it is neither a necessary ingredient of models 
defined via interface Hamiltonians nor is it a consequence of the truly 
microscopic theory. 

A partial answer was given somewhat incidentally already in ref. 19 
after formula (C12), where the authors require--in order to establish the 
soundness of the CWM approximation--the direct correlation function 
Cmicro of the underlying microscopic theory to be sufficiently short-ranged 
for any finite nonzero g. This is a physically reasonable--although nowhere 
proven--assumption, but it is not enough, as we will show, to guarantee 
the universal validity of such implications as the diverging interface thick- 
ness as g ~ 0 for d =  3. As to this, one needs in addition the crucial 
assumption that a certain integral expression containing Cm~ ... .  namely 

U(s)=~f dzldz2p'(zl)p'(z2)Cmir Zl,Z2) (1.1) 

is uniformly (!) short-ranged as g ~ 0. This is--in our view--by no means 
obvious. A good example for the lack of such a behavior is the correlation 
function H of the CWM in d >  3, which decays exponentially for every 
fixed g > 0 ,  but is not uniformly short-ranged, since gg= o decays only 
algebraically (more specifically: ~ [s[-(a-3)). This lack of uniformity is in 
fact a standard feature of critical point and other nonanalytic behavior. 

To put it in a nutshell, one has--as we think-- two alternatives: 

(i) 7TZ = VKB = V remains valid also in the limiting state V= 0% g = 0 
which is connected with uniform short-rangedness of U(s) (the commonly 
accepted picture). 

(ii) 7KB = 7 < 0% but 7Tz = oe in the limiting state V= 0% g = 0 (the 
possibility we would like to dwell upon, at least as a working hypothesis 
and which does not deserve to be completely ignored). 
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As a conclusion, if one has already some suspicion about the universal 
correctness of yTz--at least for V= oe, g = 0-- then by the same token the 
universality claimed for the implications of the CWM as g ~ 0 becomes 
also necessarily suspicious. (This suspicion was, however, already raised by 
quantitative checks based on rigorous estimates carried through by one of 
the authors in ref. 20. In Section 6 of that paper a development of a 
different picture of the internal structure of the interface was initiated 
which we hope to expound in more detail elsewhere.) 

While the CWM is, on the one side, free of logical contradictions (as, 
e.g., ref. 7 has shown), it suffers on the other side from the lack of a univer- 
sally valid microscopic foundation. Therefore it is often attempted to 
suport the CWM by referring to its already mentioned appealing scaling 
properties (see, e.g., the reviews in refs. 8 and 21). The necessity of such 
scaling properties in order to be able to construct "intrinsic" theories, resp. 
properties of interfaces in the limit V= 0% g = 0, has been stressed e.g., in 
ref. 22. However, while the original papers on scaling (6,v) were cautious 
enough to exclude the dimension d = 3  (at least implicitly) from the 
investigation, one became more cavalier as to this point later on (see, e.g., 
refs. 8 and 23). This latent tendency is, as we will show, by no means 
justified, since the case d =  3 is full of traps and snares. 

To subsume the implications of the above discussion: In order to test 
the value of the CWM, one must, on the one hand, go back to the 
microscopic regime from which the CWM sprang as a certain approxima- 
tion and, on the other hand, drive the CWM to its extremes by choosing 
d =  3 (the problematic and at the same time physically most interesting 
dimension) and then performing the limits V--, 0% g ~ 0  with extreme 
care, in order to test whether all the consequences and properties com- 
monly attributed to such models (and models of statistical fluid mechanics 
in general) really survive under these conditions. 

This was recently done in a lengthy and technically rather intricate 
paper by ourselves. (24) However, as there is the risk that the red thread 
might perhaps be difficult to follow within the highly facetted and subtle 
reasoning, we decided to prepare a somewhat trimmed down version which 
may be easier to comprehend and refer to the original version for technical 
details. 

2. SCALING H Y P O T H E S I S  A N D  INTRINSIC  INTERFACE 
S T R U C T U R E  

The (at least as far as we can see) presently commonly accepted 
conventional wisdom (mostly based upon the CWM) can be summed up 
in the following sketchy statements: 
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(i) In dimensions d~<3 one has in the limit g--*0 both a diverging 
interface thickness W and capillary length L (more properly: correlation 
length). 

(ii) On the other hand, one wants to reconcile these features (for 
whatsoever reasons) with at least one aspect of the older (and presumably 
locally correct) van der Waals theory, i.e., the prediction of a finite surface 
tension 7 in this limit. That is: 

(a) W--.oo, L~oo;  (b) 7<oo  (2.1) 

as g ~ 0 are the two (in some sense conflicting) constraints which make the 
study of this field both highly interesting and subtle. 

This couple of demands leads immediately to the idea that these 
phenomena might hint at a situation being (at least qualitatively) similar 
to the behavior of (near) critical bulk systems in d -  1 dimensions. In case 
of the CWM proper one, e.g., hopes that by a clever rescaling via W and 
L (as functions of g) one may tame the large fluctuations and manage to 
arrive at a "fixed-point" theory, resp. Hamiltonian displaying the "intrinsic" 
quantities and properties one is ultimately after, i.e., a stable intrinsic inter- 
face of finite thickness with a nonvanishing and finite surface tension. In a, 
however, different approach the same goal is invoked, e.g., in ref. 22, where 
the method of conditional correlations is exploited. The former picture, to 
which we will stick in the following, was to some extent advocated and 
expounded by Weeks (6) and has been shown to work very well in dimen- 
sions d <  3. (7) 

On the other side, and somewhat suspiciously, remarks and observa- 
tions have been, to say the least, extremely scarce and cloudy as far as the 
dimension d =  3 is concerned (for a few, however incomplete, results see 
ref. 5). This is quite nasty, since, evidently, the topic is of great practical 
and fundamental importance most notably for d =  3 (both for "free" inter- 
faces and "wetting"). 

Unfortunately, the case d =  3 seems to be, in the language of critical 
point behavior, a "crossover dimension" with, e.g., logarithmic contribu- 
tions, and calculational traps abound. This had the effect that, typically, 
results for d <  3, most notably for lattice systems, have been invoked to 
support the view that an analogous behavior prevails also in d =  3, while 
for d > 3 a drastic change is to emerge. 

As to the use of lattice models, we would like to remark that we 
developed in Section 6 of ref. 20 an (at the moment still sketchy) picture of 
interface behavior which seems to indicate that exchange mechanisms 
parallel to the interface and kinetic effects may be important which are 
necessarily absent in lattice systems (in particular in column or SOS 
models). 
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Furthermore, the widespread attitude that the rigorous results, 
obtained for lattice systems (mostly for d <  3), do support the universal 
validity of the CWM is in some respect self-referential, since, evidently, 
both model systems care only about the one-dimensional up and down 
motion of the interface as such assuming afortiori only an extremely short- 
ranged interaction. (We shall discuss below that it is just this assumption 
of a too short-ranged interaction in interface models which may be 
problematic at least in d--3 . )  

It should be stressed that--despite of this sort of circular and in some 
sense "self-supporting" reasoning--there is no doubt that the CWM is 
internally consistent. That there exists, however, another chain of reasoning 
was expounded by us in Sections 4 and 5 of ref. 24, the red thread of which 
will be given in the next section. On the other hand, one can try to drive 
the CWM itself, in particular its scaling properties, to its extremes in order 
to test whether its predictions remain the physically expected ones also in the 
limiting region g ~ 0. This was the concern of Sections 2 and 3 of ref. 24. 

In these sections we found the CWM beset with irregularities and 
what we consider to be pathologies in the "critical region" around g = 0 
and which do not seem to have been universally known before. The most 
remarkable, in our view, is the nasty behavior of the direct correlation 
function C, which we will discuss below. But before going into the technical 
details, we would like to comment on what actually seemed to be surmised 
in d =  3 when g ~ 0 before (!) our paper (24) circulated. The scaling picture 
assumed the following equations (the prime denoting differentiation): 

(i) p'(zl) = -fl  f dz2 ds H(Zl, z2, S) Ur(Z2) 

(ii) ~)TZ [-U'] = [2/~(d-- 1)] -1 f dz, dz2 ds H(z,, z2, S) S2V'(Z1) D'(Z2) 

(iii) (~(Zl-Z2) 6(s1-s2)=f  dz3ds3H(Zl,Z3,s13)C(z3, z2, s32) (2.2) 

(iv) YTz[P] = --[2fl(d--  1)]-~ f dz, dz2 ds C(z~, z2, S) s2p'(z1) p'(z2) 

if (V) U'(Z1) : --  ~ dz2dsC(z1,z2, s) Pt(Z2) 

to go over into the limiting equations where Zl, z2, s, H, C, p, and v are 
replaced by the corresponding rescaled quantities 

"Cl, 2 :---~ Z1,2/W; X := s/L; Hs('Cl, ~2, x); Cs(T2I, "~2, x) 
(2.3) 

Ps(r); vs(r); 7intr := lira ~a-z(g) = : 
g ~ 0  

(for more details see Section 2 of ref. 24). 
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As an illustrative example of what was usually surmised from the 
scaling picture (especially for the CWM), we would like to mention, e.g., 
some results of Chapter 1.3 of ref. 8 for d~< 3, g--, 0: 

(i) 

(ii) 
for d = 3 .  

(iii) 

W 2 ~ L  3 J for d < 3 ;  W2,,~lnL for d = 3  (2.4) 

H(zl ,  z2, s) is asymptotically equal to H~(r 1, ~2, x) for d <  3 and 

C(Z1, Z2, S) is asymptotically equal to L-(d+ l)Cs(zl, 722, X) for 
d < 3  andfor  d = 3 .  

(iv) ~dss  2 .C(z l , z2 ,  s) =: C2(zl, z2) is asymptotically equal to 
C2,,(~1, ~2) for d <  3 and for d =  3. 

The scaling relation H=asymp t O s was independently taken for granted by, 
e.g., Ciach (both for d <  3 and d =  3) in ref. 23. Furthermore, we know from 
many discussions with various experts in the field that the above is not an 
unfair resum6 of an at least widespread belief. In contrast to this, we want 
to emphasize t h a t  all these conclusions are true for d < 3 ,  but are 
definitively wrong with the exception of (i) in space dimension d = 3 !  
Contrary to widespread belief, for d = 3 neither H nor C obeys the scaling 
relations. Even worse, as one of our main results we proved in ref. 24, 
Eq. (3.18)ff, that Cs does not even exist for g = 0 and that its behavior for 
g ~ 0 is catastrophic. That is, in contrast to (2.4), we actually have 

C(zl, z2, S)=asymptL 4-[C0(271,'c2, x)--1- ~ w2n.Cn(~l,~J2, X)] (2.5) 
n=l 

In other words, only the zeroth order scales as expected by conventional 
wisdom. The remaining (and ultimately dominant) part is a term-by-term 
divergent series as g --* 0! 

Summing up the content of Section 3 of ref. 24: 

(i) H scales asymptotically as W - 2 . H  s with H s degenerating to a 
one-dimensional projector! 

(ii) C splits into a "regular" and a "singular" contribution with 
catastrophic scaling behavior. 

(iii) This pathological behavior of C in the scaling limit is, however, 
shielded in 7Tz (to some extent) thanks to the fact that all but the 
"regularly" scaling zeroth-order contribution is projected to zero. 

Hence we come to the following: 

Conclusion: A proper scaling limit of the CWM does not exist in 
d =  3! Various expressions behave catastrophically in this limit. As a 
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certain remnant the expression for 7xz stays finite as g ~ 0 provided that 
the limit is performed outside (!) the z-integrals. Anyway, one building 
block of 7Tz, namely Cs (or C2.,) is ill-defined in this limit. 

3. THE MICROSCOPIC ( N O N ) F O U N D A T I O N  OF AND BEYOND 
THE C W M  

In this section, which is partly an elucidation of Section 4 of ref. 24 (cf. 
also Appendix C of ref. 19), we briefly analyze how the CWM and the 
underlying microscopic theory may be related with each other, more 
properly, which preassumptions are actually needed to establish such a 
connection. Furthermore, we show a way beyond its limited range of 
applicability. 

In a first step we evaluate the free energy of a given fixed fluctuation 
of the microscopic interface (in technical terms a partial trace) up to 
second order. We get [cf. (4.2), (4.5) of ref. 24] 

AF(2)= 1/2/3 f dr dr' C(r, r') Ap(r) Ap(r') 

resp. 

AF(Z)= l/2 f dsl dS2 [1/fl f dzl dzz p'(zl) p'(z2) 

x C(s~ - s 2 ;  zl,  z2)] h(s1) h(s2) (3.1) 

where Ap is substituted by a specific elongation h(s). 
Setting this in relation with a corresponding interface Hamiltonian, 

one has 

a~[h] .= ~ [ h ] - ~ [ h - O ]  

= 1/2 1 ds, ds= 62~/6h(s,) 6h(s2) ~ o  " h(Sl) h(s2) (3.2) 

One can now identify the interaction kernel 

U ( s l -  s2) "= 62,,~/6h(s,) 6h(s2) ~=_o 

with 

(3.3) 

1//3 f dz, dz2 p'(zl) p'(z2) C(sl - s2; z~, z2) 



3D Capillary Wave Model 815 

Conclusion: From the above one sees that the interaction kernel 
U(s~- s2) of any effective interface Hamiltonian is uniquely determined by 
the microscopic theory via (3.2), (3.3)! 3 

Evidently (3.2), (3.3) define already a completely satisfactory interface 
Hamiltonian, having the advantage of being both universally correct (up to 
second order!) and much more general than the CWM. In order to see 
under what special conditions one arrives in a further step at the CWM, 
one has to make a physically strong assumption, which is, via (3.3), a 
strong assumption about the underlying microscopic model. 

Assuming that (i) the dominant contributions in the path integral 
originate from sufficiently smooth paths, and (ii) U(st-s2) is sufficiently 
short-ranged for some fixed (!) exterior gravitational potential v(z), a 
Taylor expansion may be justified in (3.2), (3.3): 

h(s2) = h(Sl) + ( s 2 -  sl) Vh(sl) + 1/2[(s2 - sl) Vsl] 2 h(s~) + ... (3.4) 

leading (in second order) to 

A ~ [ h ]  = 1/2 f dS 1 (Is 2 U(s 2 -- s1)-h(s1) 2 

- 1 / 4 ( d -  1) f ds 1 ds 2 U(s 2 - s 1 ) .  (s 2 - $ 1 )  2. [Vh(s1)] 2 (3.5) 

With the identification (3.3) and using the well-known equation 

f dz dsp t ( z2 )  C(s ; z1 ,  z2)~- - f l y ' ( z1 )  (3.6) 

the first term on the rhs reads 

- 1/2 f dz p'(z), v'(z), f ds h(s) 2 (3.7) 

Replacing v(z) by mgz [for measures of precaution as to this unbounded 
potential, see, e.g., (2.3)ff, resp. (4.13)ff, of ref. 24], we get finally 

(3.8) 

i.e., the gravitational contribution in the CWM. 

3 As to some critical remarks concerning the range of applicability of interface models like the 
CWM, see the Appendix of this paper. In this connection we want to thank also one of the 
referees for criticism. 
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As to the second term on the rhs of (3.5), we have 

• 1/2 f ds' IVh(s')l 2 

= 7Tz(g)" 1/2 f ds IVh(s)l z (3.9) 

In order that the CWM approximation be meaningful also around g = 0, 
we have to assume that U, given by (3.3), is not only short-ranged for each 
nonzero g (i.e,, pointwise), but moreover uniformly so as g ~ 0! 

Conclusion: (i) The CWM emerges for fixed g > 0  as a special 
approximation of the "rigorous" microscopic expression (3.5) under the 
proviso that a Taylor expansion up to second order of h(s) be justified, in 
other words, that U be sufficiently short-ranged with respect to s. 

(ii) As g ~ 0 this a priori assumption may become problematical for 
d =  3, since we have severe doubts whether one can really consider U as 
being uniformly short-ranged with respect to s for g ~ 0 to be self-evident. 

From all this we infer that, at least as kind of a thought experiment, 
one should investigate the more fundamental expression (3.5) with some 
care and speculate, at least as a possibility, what might happen if matters 
do not behave as smoothly and universally as assumed by the CWM in 
reality. 

Equation (3.5), resp. its Fourier transform 

A~t~[h] = 1/2.(2rc)2(a-1).[dq U(q) .h(q)h(-q)  (3.10) 
J 

leads via Gaussian integration to the height-height correlation 

S(s) = 1//3(2z) 2(a- ~). [ dq eiqs/(j( q ) 
J 

(3.11) 

Assuming a suitable ultraviolet cutoff (as usual) being built into the theory 
[-implying a sufficiently strong increase of U(q) for q --+ on ], the physically 
relevant situation is the limit q--, 0. 

One has roughly two possibilities: 

(i) If U(q, g) - U(0, g) = O(q 2) 
uniformly in g, one arrives at the same situation 
as in the CWM. 
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(ii) If U(q, g ) -  U(0, g) can be (3.12) 
uniformly bounded only by a 
function vanishing slower than O(q 2) 
for g near 0, one may 
end up in a different regime! 

Typical cases in point of the asymptotic behavior of the bound are 

O(Iq] 2 ~) or O(q 2. Iln(a-]qf)l 1+') (3.13) 

more specifically, for each g > 0  the asymptotic behavior of ~)(q, g ) -  
U(0, g) is analytic but not uniformly (!) so s.t. in the limit g = 0  a 
nonanalyticity (!) has emerged with, e.g., a t /> 0 (and which can never be 
observed for g > 0!). 

This is, by the way, a common feature both in mathematics proper 
and in critical point behavior s.t. the occurrence of this possibility should 
not come as a complete surprise. The various consequences of this 
phenomenon are compiled in the following observations [for more details 
see ref. 24, expression (4.20)ff.]. 

Observation. (i) If the a priori assumption of uniform short-ranged- 
ness of U(s) as g ~ 0 is not satisfied, one may arrive at a nonanalytic 
behavior of U(q, g = 0 )  at q = 0 ,  which implies furthermore that 
U(q, g =  0) ~e La(R 2) becomes a possible feature. 

(ii) With the help of (3.9) and (3.11), this latter possibility yields 

and 

W : =  S(0)~/: < oo 

7TZ(g=0)=(2~)  a 1/2(d-1) . . . (V2U) ['q=o=OO (3.14) 

Remark. As to the last point, there is nothing really to worry about, 
since, as was shown by us in detail in ref. 7, 7~rz is not necessarily the 
correct expression in the limit g = 0 ,  as limg~o 7Tz(g) and 7a-z(g=0) are 
no longer equal for such a scenario. 

Conclusion. As the (for g--* 0) diverging W was responsible for all 
the pathologies, accompanying the scaling assumptions [see, e.g., the 
expression for C in (2.4)], we arrive now at the following sequence of 
observations: 

(i) Assuming that the CWM remains a valid approximation also for 
g--* 0 and that the physically intuitive scaling ansatz holds, one has to face 
a whole bunch of nasty features of the limit theory. 
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(ii) The applicability of the CWM requires U to be uniformly short- 
ranged with respect to s as g --* 0. If this assumption is not fulfilled, one has 
to expect a nontrivial interaction kernel U(sl -s2) ,  resp. an U(q) which 
may become nonanalytic at q = 0 as g ~ 0. 

(iii) Such nonanalyticity, which is quite common in, e.g., critical 
point behavior, can, on the other hand, give rise to a nondiverging (!) W 
as g ~ 0 and implies an ill-defined 7a-z(g = 0). 

We think that the model suggested by us is a valid alternative to the 
CWM in current use. We conjecture that there might be situations where 
our theory leads to more reliable results. This is the more so as there are 
already examples where a behavior as suggested by us prevails, such as, 
e.g., in harmonic crystals with long-ranged Couomb-like interactions [cf. 
(4.24)ff. of ref. 24). The counterpart of the ill-defined 7-rz(g = 0) in the inter- 
face model is an infinite longitudinal velocity of sound in such crystal 
models. 

As a last point, we want to remark that we have introduced in Sec- 
tion 5 of ref. 24 an explicitly solvable interface model which displays all the 
features we have alluded to above. Furthermore, its detailed analysis, in 
particular the eigenfunction expansion of H and C, shows some fascinating 
side aspects as to the universal validity of the so called "Wertheim 
ansatz, ''(1) i.e., the dominance and nondegeneracy of the eigenvalue zero, 
on which, more or less openly, quite a large part of microscopic interface 
physics has been built (cf. in particular Appendix 4 of the review in ref. 27). 

In our conclusion to that section we show that the validity of this 
ansatz is extremely sensitive and highly unstable against any perturbation, 
which makes the "neighborhood" of the CWM extremely erratic. To give 
an example: for U(q, g = 0 ) ~  IqL 2-" the eigenvalue zero of C(q = 0) turns 
out to be [2/t/]-fold degenerate in our model, in contrast to the above- 
mentioned hypothesis of nondegeneracy. We want to emphasize that we 
consider this feature to be quite typical and not to be an artifact of our 
model. 

4. THE P A T H O L O G I C A L  B E H A V I O R  OF THE L I M I T - D I R E C T  
CORRELATION F U N C T I O N .  T W O  CONFL ICT ING V I E W S  

In this section we want both to dwell in slightly more detail on what 
we consider to be the main shortcoming of the currently prevailing scaling 
philosophy of the three-dimensional CWM in the limit g ~ 0 and comment 
on some recent work of Weeks et aI. ~25'26) which, mainly as a reaction to 
our criticism of the present state of affairs in ref. 24, embarked on a closer 
and more careful inspection of various points raised by us. 
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While the breakdown of the (unmodified) scaling picture in d =  3 has, 
as far as we can see, also been acknowledged by Weeks etal., (2s) it still 
depends on one's personal philosophy what one is going to make of this 
observation. As to this, there seem to exist at the moment two conflicting 
views, the one held by us, the other by Weeks et aL 

While, in contrast to various critical remarks of Weeks et aL, (2s~ our 
mathematical treatment of the delicate limit g--+ 0 is perfectly sound and 
has been done with great care, it is worthwhile to scrutinize the (partly not 
openly stated) physical assumptions which lie at the core of these, at first 
glance, seemingly contradictory results. 

It is in fact not particularly difficult to put one's finger on the point 
where Weeks' approach bifurcates from our treatment of the same subject: 
According to the philosophy of the original scaling picture we chose as 
"natural" length scale parallel to the interface the correlation length L. 
That is, we maintain that when adopting the sealing philosophy in the 
asymptotic regime g ~ 0, all (!) distances have ultimately to be measured 
as multiples of L with x : =  s/L the only (!) remaining natural length 
variable. 

This implies that in the scaling limit all s-values which remain 
constant, resp. grow significantly weaker than ~L ,  are mapped into the 
point x = 0 and lose their individual physical meaning (as is also the case 
at the critical point). 

In contrast to this, Weeks et al. try to invoke something like a 
"floating length scale" picture; they, e.g., employ in their counterarguments 
against our conclusions s-values being constant resp. growing ~ x/L, i.e., 
s<~L (with L--* oo), thus hoping to escape the nasty consequences we 
brought to the fore in ref. 24. However, in doing this they leave their own 
scaling framework and make the whole philosophy of this model system 
rather fuzzy. 

But what is actually worse in our view (and which will be shown 
below) is that by staying away from the regime s = O(L)  they lose entirely 
the control over the really crucial and significant pieces of the theory 
which, with g--,0, become more and more concentrated in the region 
s = O(L),  resp. q ~ 0 (q is the Fourier transform of s). 

To show this, it is advantageous to employ the Fourier transform of 
C(zl ,  z2; s), i.e., (~(zl, z2; q) which, with the help of (2.5), has the (exact) 
representation (irrespective of any a priori scaling assumption): 

d(z1,z2;q)=asymptL 2. d o ( r l , r 2 ; Q ) +  ~ w2n.dn( .c l , .C2;Q ) (4 .1 )  
1 

with Q :=  L . q  corresponding to x := s/L, Cn being proportional to the 
reciprocal of the Fourier transform of [Ko(x)] "+ l, Ko the modified Bessel 

822/64/3-4-22 
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function of second kind. [For more details see (3.17) of ref. 24, and ref. 25, 
Section 5. ] 

From this exact relation one can infer that the singular and dominant 
contribution comes in the limit g ~ 0 (implying L ~ o% W ~  oe) from 
Q-values being more or less constant, i.e., from the infinitesimal neigh- 
borhood {Iq] < L - 1 } t  

Weeks et al., however, truncated this crucial region (almost from the 
outset) by confining themselves (for reasons we cannot really follow) to the 
regime {Iq[ >>L-l}, i.e., s ~ L .  By this trick they pick up the entirely 
harmless part of C, resp. C, while the physically most relevant and 
ultimately singular contribution gets out of their sight. 

As a concluding remark, we would like to emphasize that, in our view, 
one has not really the physical freedom of excluding the critical region 
{ Iql < L -1 } in the limit g ~ 0. As (4.1) is an exact relation, the singularities 
mentioned by us are already present in C(zl,  z2; q) around q = 0 for g -4 0. 
They are only brought to light by magnifying and unfolding this 
infinitesimal region with the help of the transition to the variable Q = q. L. 

To sum up what we have tried to say: Starting from the conventional 
wisdom, we showed rigorously that one will presumably run into all sorts 
of technical and physical difficulties due to the fact that the degree (t) of 
exponential clustering need not be uniform for g ~ 0. As a consequence, 
one may arrive at two limiting scenarios: (i) Either the CWM is in some 
sense an oversimplification or (ii) the scaling picture is no picture at all, 
being then a mere technical "epiphenomenon," working well for d < 3, d > 3 
(especially supplying us with well-defined g =  0 theories), but developing 
nasty features for d =  3 (t). In our view, these features escape the notice of 
Weeks et al., as they never really attempt to explicitly perform the limit 
g ~ 0 .  

5. A P P E N D I X  TO SECTION 3 

We would like to remark the following: Note that, in order to be 
logically consistent, one actually has to break off the expansion after 
the second order, as the CWM itself is only a second-order (t) theory, 
its physical reliability being restricted .to sufficiently small elongations (if 
compared, e.g., with some "natural" length in the direction of the 
interface itself). This is, by the way, also the case for ?Tz t 

The procedure is comparable with the common approximation of the 
fully microscopic theory of a crystal lattice by a harmonic crystal model via 
expanding the microscopic Hamiltonian up to second order in the dis- 
placements of the particles from their equilibrium positions. 
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